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Experimentally validated 3-D simulation of shock waves generated by
dense explosives in confined complex geometries
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Abstract

Accidental blast wave generation and propagation in the surroundings poses severe threats for people and property. The prediction of
overpressure maxima and its change with time at specified distances can lead to useful conclusions in quantitative risk analysis applications.
In this paper, the use of a computational fluid dynamics (CFD) code CFX-5.6 on dense explosive detonation events is described. The work deals
with the three-dimensional simulation of overpressure wave propagation generated by the detonation of a dense explosive within a small-scale
branched tunnel. It also aids at validating the code against published experimental data as well as to study the way that the resulting shock wave
p easurements
s onfirming that
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ropagates in a confined space configuration. Predicted overpressure histories were plotted and compared versus experimental m
howing a reasonably good agreement. Overpressure maxima and corresponding times were found close to the measured ones c
FDs may constitute a useful tool in explosion hazard assessment procedures. Moreover, it was found that blast wave propagate
upersonic speed along the tunnel accompanied by high overpressure levels, and indicating that space confinement favors the f
aintenance of a shock rather than a weak pressure wave.
2005 Elsevier B.V. All rights reserved.
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. Introduction

The study of the generation and propagation of blast waves
ere always of great importance from the safety viewpoint

or any chemical industry handling explosive materials or
ammable gases. A large number of past explosion accidents
as led to considerable property damages, in addition to hu-
an injuries along with fatalities in some cases[1].
In fact, risk analysis procedures applied in dangerous in-

tallations focus on the quantitative consequence estimation
f potential accidental events (explosion, fire, toxic disper-
ion) aiming at the determination of hazardous zones in the
icinity. With regard to the explosives industries, where the
ain hazard arises from potential explosions, the interest con-

erns the evaluation of the effects of the shock wave generated
y such energetic events. Usually, the criterion for a certain
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level of damage is the maximal (peak) overpressure pred
to developing at specified distances of interest[2–4].

The major characteristic for any explosion is the rapid
lease of a huge amount of energy in time intervals of
order of microseconds, which results in sharp local pres
increase. Subsequently, an overpressure wave is gen
that propagates in three dimensions with velocity that
ceeds the velocity of sound (supersonic flow) covering s
large distances. Possible explosion sources may be cond
phase materials, or flammable gas–air mixtures in con
(or not) space (confined and unconfined vapor cloud
plosion, respectively). Condensed phase sources are
highly exothermic chemical substances that are design
explode, namely to release their energy quite rapidly,
they include high (or dense) explosives, solid propella
and mixtures of fuels and oxidizers[5].

Among the widely employed semi-empirical me
ods for blast overpressure estimation (TNT equivale
Baker–Strehlow, TNO multi-energy), the TNT equivale
is the only one that can be recommended for high ex
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Nomenclature

dp density of the explosive material (kg m−3)
Er explosion power (kg m2 s−3)
k turbulence kinetic energy per unit mass

(m2 s−2)
Mp explosive mass (kg)
rn residuals in the linearized system of equations
Rp radius of the spherical explosive mass (m)
S step function expressing the energy production

within the domain during the explosion phase
(kg m2 s−3)

t time (s)
t0 time of explosion initiation (s)
t1 energy release duration (s)
tc time constant equal to 1 s
U detonation velocity (m s−1)
V volume of integrated cell (m3)
Vp volume of the explosive sphere (m3)
X, Y horizontal coordinates (m)
Z vertical coordinate (m)

Greek letters
α1 dimensionless constant
�Hp mass specific energy (J kg−1)
µt turbulence dynamic viscosity (kg m−1 s−1)
νt turbulence kinematic viscosity (m2 s−1)
ρ density (kg m−3)
ϕ general scalar variable
ϕ0 solution field in the first order Backward Euler

scheme
ϕ00 solution field in the second order Backward Eu-

ler scheme
ω turbulent frequency (s−1)

Subscripts
i the identifying number of the finite volume or

node

sives[6]. However, the assumption of an equivalent mass
of TNT does not allow for the characteristics of the explo-
sion, whilst the way it affects the surroundings is independent
of the explosion source. In fact, material physical properties
play important role in blast wave characteristics; for exam-
ple, higher explosive density entails higher detonation ve-
locity and hence greater rate of energy release resulting in
enhanced overpressure levels[7].

Alternatively, numerical techniques may be applied to
describe detonation events. Computational approximations
of explosions have been performed in previous papers us-
ing two-dimensional, time-dependent conservation equations
[8,9]. This work aims at testing the suitability of the three-
dimensional CFD code CFX 5.6 on the simulation of shock
wave propagation in a confined complex geometry. Some

discussion for the computational capabilities of the code has
been made in a previous paper[10]. The simulation presented
in this paper deals with the experimental work of Binggeli et
al.[11], in which dense explosive detonation test took place in
a small-scale branched closed tunnel. This latter experimental
work performed to study the propagation of the shock wave in
a complicated tunnel by logging overpressure histories prior
to branching, as well as at certain points in the branches. The
explosive used in the experiment was Plastit, a solid energetic
material used mainly for military purposes. Like most dense
explosives, it has the property of exploding at essentially con-
stant rate, namely with constant detonation velocity[12].

In the simulation procedure, the detonation duration and
energy release rate were defined for the current explosive ma-
terial (Plastit) using its physical properties (mass specific en-
ergy, density, detonation velocity), by a properly adapted step
function for the energy production term. Proceeding on the
discretisation of the domain, besides selective mesh refine-
ment of the initial unstructured tetrahedral mesh (techniques
that have been also used in other explosion codes[13,14]),
there was the possibility for inflation layers construction on
the walls of the domain, allowing for better modeling of the
close-to-wall physics where large variations of fluid proper-
ties occur.

The obtained overpressure maxima and wave structures
were compared against the corresponding experimental ones
w le to
p pace
c the
d uper-
s evel-
o ithin
t ic ac-
c ates
a sion,
s eak
p fects.

2

2

c and
s , yet
w imu-
l r the
c teady
N

n the
d any
m odel
i the
e tion,
c del
i netic
ith a fairly good agreement, showing that CFDs are ab
redict potential explosion effects in complex confined s
onfigurations. Moreover, velocity visualizations within
omain revealed that blast wave propagates preserving s
onic speed along the narrow part of the arrangement d
ping at the same time high overpressures. In contrast, w

he free-field part, wave speed turns abruptly to subson
ompanied by significant overpressure drop. This indic
n important role of space confinement during an explo
ince it favors the formation of a shock rather than a w
ressure wave, thus increasing the risk for destructive ef

. Numerical methods

.1. Governing equations

The CFX code has been designed to solve transoni
upersonic flows, even for Mach numbers bigger than 2
ith slow convergence rates, as observed during the s

ations. The set of equations considered in the code fo
onservation of mass, momentum and energy are the uns
avier–Stokes equations in their conservation form[15,16].
In supersonic flows or when sharp shocks appear i

omain, the kinetic energy effects cannot be neglected
ore as happens in low speed flows. Total energy m

ncorporated in CFX code predicts the temperature in
ntire domain accounting for heat transfer by conduc
onvection, turbulent mixing and viscous work. This mo
s essential for Mach numbers up to 2 and besides ki
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energy effects, it takes into account buoyancy effects arisen
by hot spots in the domain (i.e. due to thermal sources) and
hence large local density variations.

2.2. Turbulence modeling

A number of models have been developed that can be used
to approximate turbulence based on the Reynolds Averaged
Navier–Stokes equations and can be classified as either eddy
viscosity or Reynolds stress models[16].

The SST model[17,18]used in the computations was de-
signed to give highly accurate predictions of the onset and the
amount of flow separation under adverse pressure gradients
by the inclusion of transport effects into the formulation of the
eddy-viscosity, resulting in major improvement of flow sepa-
ration prediction capability. The proper transport behavior is
obtained by a limiter to the formulation of the eddy-viscosity:

vt = α1k

[max(α1ω, SF )]
(2.1)

where

vt = µt

ρ
(2.2)

F is a blending function of the distance to the nearest wall
and the flow variablesk, ω, which restricts the limiter to the
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In the second step, the generation of hybrid tetrahedral
grids (the so-called inflation layers) consisting of layers of
triangular prism elements on the boundary surfaces and tetra-
hedral elements in the interior is carried out. In contrast with
pure tetrahedral meshes, hybrid tetrahedral meshes with near-
surface prism layers allow for better modeling of the close-
to-wall physics of the flow field (i.e. sharp velocity changes)
giving rise to more accurate results.

2.4. Solution scheme

Analytical solutions to the Navier–Stokes equations exist
for only the simplest of flows under ideal conditions[20]. To
obtain solutions for real flows, a numerical approach must be
adopted whereby the equations are replaced by algebraic ap-
proximations which can be solved using a numerical method.

The solution to the conservation equations via FVM pro-
ceeds through the integration of the governing partial differ-
ential equations over all the control volumes (3-D elements).
Afterwards, the integral equations obtained are converted to a
system of algebraic equations. The latter are solved iteratively
at nodal points inside each cell aiming at minimization of the
residuals (iteration loop error) until the desired convergence
be satisfied.

CFX 5.6 uses a coupled solver, which solves the hydrody-
namic equations (for pressure and velocity components) as
a licit
d duc-
i The
g

ient
p heme
w iable
s is an
i t of
all boundary layer, whileS is an invariant measure of t
train rate.

.3. Grid generation

The numerical method used for the discretisation of
omputational domain was the finite volume method (FV
19], which has been utilized in explosion studies for
iscretisation with unstructured triangular grid[14]. This ap-
roach involves the subdivision of the entire domain int
ite control volumes (cells) using a grid (mesh). The gov

ng equations are integrated over each control volume,
hat the relevant quantity (mass, momentum, energy, et
onserved in a discrete sense for each cell.

The current version of CFX code incorporates the A
YS ICEM CFD 4 meshing tool. The full construction

he mesh is performed in two steps: Initially, the domain
me is filled with tetrahedral cells, whilst a triangular surf
esh is generating on the overall object surface. For imp

ng cells quality, a power smoothing algorithm as well a
ariety of tools for local mesh adaptation and refineme
vailable. Mesh construction parameters (such as scale
nd maximum element size) are user defined. Thus, pa

ar care should be given in order to an optimal mesh be b
either too coarse (because then the solution may not b

sfactorily accurate and significant deviations from the
alues may arise), nor too refined (since extremely re
eshes may demand excess CPU time to execute a

ation). The latter depends strongly upon the computat
ower available.
single system. This solution approach uses a fully imp
iscretisation of the equations at any given time step re

ng the number of iterations required for convergence.
eneral solution algorithm is illustrated inFig. 1.

In this work, in order to obtain a solution to the trans
roblem, the second order Backward Euler transient sc
as employed, which is applicable for constant and var
tep sizes. The second order Backward Euler method
mplicit time-stepping scheme and, in contrast with tha

Fig. 1. Solving algorithm in CFX 5.6.
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first order, is second order accurate in time. However, it is
not monotonic and therefore inappropriate for some quanti-
ties that must remain bounded, such as turbulence quantities.
Consequently, the first order Backward Euler scheme was
applied as far as turbulence equations are regarded.

The first order Backward Euler scheme approximates the
transient term as:

∂(
∫
v
ρϕ dv)

∂t
= ρV (ϕ − ϕ0)

�t
(2.3)

It is robust, fully implicit, bounded, conservative in time,
and does not create a time step limitation. The transient term
has no bearing on the steady state solution, but it is only first
order accurate in time and therefore may induce numerical
diffusion in time.

The second order Backward Euler scheme approximates
the transient term as:

∂(
∫
v
ρϕ dv)

∂t
= ρV

�t(1.5ϕ − 2ϕ0 + 0.5ϕ00)
(2.4)

whereϕ00 represents the solution field from the time step
before the old time level. This scheme is also robust, implicit,
conservative in time, and does not create a time step limitation
[20].

Solution fields are stored at the mesh nodes. Nevertheless,
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also includes the central coefficient multiplying the solution
at theith location. The node may have any number of such
neighbours, so that the method is equally applicable to both
structured and unstructured meshes. The set of these, for all
finite volumes constitutes the whole linear equation system
and can be written in the general matrix form:

[A][ϕ] = [b] (2.7)

where [A] is the coefficient matrix, [ϕ] the solution vector
and [b] the right-hand side.

The above equation can be solved iteratively by starting
with an approximate solution,ϕn, that is to be improved by
a correction,ϕ′, to yield a better solution,ϕn+1, i.e.

ϕn+1 = ϕn + ϕ′ (2.8)

whereϕ′ is a solution of

Ȧϕ′ = rn (2.9)

with rn, the residual, obtained from

rn = b − Aϕn (2.10)

Repeated application of this algorithm will normally yield
a solution of the desired accuracy.

3
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arious terms in the equations require solutions or solu
radients to be evaluated at integration points, so there
e a way to calculate the solution variation within an elem
his is achieved by means of finite element shape func

16], according to which a variableϕ varies within an elemen
s follows:

=
Nmode∑
i=1

(Niϕi) (2.5)

hereNi is the shape function fori-node,ϕi the value ofϕ
t the same nodal point and the summation is referred t
ver all nodes of the volume element.

The numerical technique utilized for the completion
he advection term discretisation was the first order upw
ifferencing scheme (UDS)[19]. Difference schemes in the
ajority are based on series expansion approximations
s the Taylor series) for continuous functions. UDS is
obust, namely numerically stable, and is guaranteed t
ntroduce non-physical overshoots or undershoots in th
ution.

At the last step, the linear set of equations that aris
pplying the FVM to all elements in the domain are disc
onservation equations. The system of equations can be
en in the form:

nbi

anb
i φi = bi (2.6)

hereϕ is the solution,b the right-hand side,a the coeffi-
ients of the equation,i the identifying number of the finit
olume or node in question, and nb means “neighbour”
. Simulation set up

.1. Experimental set up

The experiment belongs to an experimental research
ram of NC Laboratory Spiez for investigating the effect
etonations and resulting blast wave propagation in cl

unnel systems. The experiment implementation dealt w
igh explosive (Plastit) detonation in the arrangement sh

n Fig. 2. The purpose was to study the propagation of
hock wave in the complicated tunnel by obtaining overp

Fig. 2. Experimental configuration built in CFX code.
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Table 1
Plastit properties and calculated parameters entered into the step function (Eq.(3.1))

Step function terms Properties Calculated parameters

Physical quantities Mass specific energy
(kJ/kg)

Density (kg/m3) Detonation velocity
(m/s)

Detonation duration (s) Energy release
rate (kg m2 s−3)

Input values 4870 1580 8500 165.8× 1E−8 54351× 1E6

sure histories measurements prior to the bifurcation, as well
as at certain points in the branches of the tunnel.

The experimental set up consisted of a branched cylindri-
cal section connected in one side with a box of relatively large
dimensions. The blast charge had spherical shape and mass
equal to 0.0185 kg (500 kg in full scale), while it was situated
in the middle of the cross-section between the tunnel and the
box’s free field. The cross section of 1:30 scaled tunnel was
circular with a diameter of 0.168 m corresponding to 5 m in
full scale.

The airblast propagation was studied in the L-shaped tun-
nel and transient overpressure levels were measured at points
1 (before the branch), 2 and 3 (after the branch). All mea-
surement points (MP) were laid on the axis of symmetry of
each tunnel. The dimensions presented inFig. 1are equal to:
H: 0.868 m,W: 0.7 m,D: 0.168 m,L1: 0.360 m,L2: 1.280 m
andL3: 1.416 m. The distances of MP1 and MP2 from the
center of blast charge were 0.668 and 1.004 m, respectively,
whereas the distance between MP3 and the horizontal axis of
symmetry was equal toD.

3.2. Input data definition

The adiabatic (no heat transfer) wall boundary condi-
tion was imposed for the sides of the pipes and the cube.
As discussed above, condensed explosives have the property
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4. Computational results and discussion

4.1. Validation

The mesh on the 3-D computational domain was con-
structed after deciding for a refinement of the volume ele-
ments bounded on tunnel sides, in addition to the creation of
inflation layers on the box and tunnel walls. Adaptive grid
techniques have been also incorporated in other explosion
codes for the refinement of domain regions of major interest
[13]. The ultimate grid consisted of 33,450 volume elements,
from which 24,620 were tetrahedrons and 8830 were prisms.
In Fig. 3the inflation layers on the tunnel walls as well as the
refined section of the mesh are presented.

The solution of the problem was divided into two stages.
First, an initial values file was obtained by solving the prob-
lem in steady state. Then, the transient solution proceeded for
total simulation time equal to 0.01 s by giving very small time
steps varied from 1E−9 to 1E−5 s as follows: 10× 1E−9 +
9 × 1E−8 + 9 × 1E−7 + 9 × 1E−6 + 999× 1E−5. The
convergence criterion for the transient run was the residual
RMS (residual of root mean square) to be equal to or less than
1E−4, but for the steady state was set one order of magni-
tude lower (1E−5). The latter led to relatively large number
of iterations (415) until the desired accuracy was achieved.
Regarding the transient runs, the number of iterations was
fl sient

F unnel
s ted on
a

f exploding at constant rate (detonation velocity), wh
alue hangs on material density and type. For that reas
ould be a good approximation, if the source term were g

hrough a properly adapted step function (S) expressing th
nergy production within the domain:

= Er × step

(−(t − t0)(t − t1)

t2c

)
(3.1)

heret represents the time (s),t0 = 0 s,tc= 1 s,t1 = detonation
uration (s) andEr the energy release rate or explosion po
kg m2 s−3).

The unknown terms on the right-hand side may be fo
or indirectly calculated) by experimental data availabl
he literature in relation with the explosive material emplo
12]. In Table 1, Plastit properties and calculated parame
elative to Eq.(3.1) are tabulated. The detonation durat
t1) is calculated by dividing the detonation velocity (U) with
he radius of the spherical explosive mass (Rp): t1 =U/Rp. The
adius is calculated as a function of the volume of the sp
Vp), which is found by dividing the explosive mass (Mp)
ith the density (dp): Vp=Mp/dp. The last termEr (J s−1) is
iven from the relation:Er = (�Hp×Mp)/t1, where�Hp is

he mass specific energy (J kg−1).
uctuating between four and six per time step. The tran

ig. 3. Computational grid and selective mesh refinement in the t
egment. Tetrahedral elements and inflation layers are also illustra
transversal cross section of the tunnel.
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Fig. 4. Predicted and experimental overpressure–time plots at point 1.

simulation required approximately 50 h clock time (CPU time
1.5× 1E5 s) for full execution on an 800 MHz Intel® Celeron
processor with 512 MB RAM.

Computational relative pressure curves are plotted ver-
sus time inFigs. 4–6for the measurement points 1, 2 and
3, respectively. The corresponding experimental curves are
also shown in the same plots. Simulation results are obvi-
ously in reasonably good agreement with the experimental
records. The difference between computational and exper-
imental overpressure curves lies in overestimation of over-
pressure maxima (peak overpressures), yet without notice-
able temporal divergence. The relative errors for computed
peak overpressures fall into the range between 8 and 18%
(Table 2) confirming a reasonably good approximation of the
experimental maxima. The relative errors for arrival times
(namely the time that pressure starts rising up) and impulse
(pressure× duration) are displayed inTables 3 and 4, respec-
tively. It is evident that the code predicts successfully the
explosion front passage through all measurement points, as
well as the impulse of the blast wave on them.

t 2.

Fig. 6. Predicted and experimental overpressure–time plots at point 3.

Table 2
Relative errors between computational and experimental peak overpressures

Measurement points Experimental
value (kPa)

Computational
value (kPa)

Relative
error (%)

Point 1 1850 2009 +8.6
Point 2 1600 1720 +7.5
Point 3 465 550 +18.2

Table 3
Relative errors between computational and experimental arrival times

Measurement points Experimental
value (ms)

Computational
value (ms)

Relative
error (%)

Point 1 0.30 0.250 −16.7
Point 2 0.44 0.46 +4.5
Point 3 0.43 0.39 −9.3

One reason for the deviations appearing inFigs. 4–6is
the simplifying assumptions on problem physics definitions;
in particular, the air in the tunnel was considered as an ideal
instead of real gas. This was necessary in order to take into
account in the computations the high compressibility effects
within the flow field of the current problem. However, the be-
havior of air as a real gas differs significantly from that of the
ideal one when the pressure takes extremely high values due
to explosion front passage. With regard to peak overestima-
tion, a possible explanation could be the heat loss that actually
happens through the pipe sides, and which was not taken into
account in the simulation. The latter means that an additional
temperature increase is calculated leading according to the
gas law to additional pressure increase. Furthermore, a much
more refined mesh could probably yield a more precise solu-

Table 4
Relative errors between computational and experimental impulses

Measurement points Experimental
value (kPa s)

Computational
value (kPa s)

Relative
error (%)

Point 1 1335 1273 +4.9
Point 2 1726 1553 +11.1
Point 3 721 558 +29.2
Fig. 5. Predicted and experimental overpressure–time plots at poin
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tion, leading however to significant enhancement of the com-
putational time. On the other hand, this overestimation might
be considered tolerable from the safety point of view, since it
would lead to overestimation of the explosion hazard in acci-
dent scenarios and hence to conservative risk assessment. The
pressure increase appearing after about 4 ms in the numerical
calculations was not observed in the experiments. This dif-
ferentiation could result from the reflections of the explosion
front at the end of the tunnel and the concurrent heat losses,
which have not been included in the computational procedure.

It is worthwhile mentioning that a simulation of the cur-
rent experiment via the two-dimensional explosion code
AUTODYN-2D was performed in the work of Binggeli et
al. [11], providing results comparable to those computed in
this paper.

4.2. Pressure and velocity profiles

In Figs. 7 and 8, pressure and velocity profiles have
been plotted inside the computational domain before and af-

F
t
(

ter the passage of the shock wave from the bifurcation at
times 0.25 and 0.60 ms, respectively. As someone can see
in Figs. 7a and 8a, the confinement of the right-hand space
(tunnel field) does not allow the free expansion of high ki-
netic energy gas molecules, as in the left-hand space (box free
field), thus leading to enhanced pressures in the right-hand
side.

Likewise, the propagation velocity of the shock wave in
the left-hand side (free-field of the domain) reduces rapidly
taking values lower than the speed of sound (subsonic flow).
On the contrary, the shock wave propagating in the tunnel
field preserves speed higher than that of sound rendering the
flow supersonic (Figs. 7b and 8b). Consequently, it may be
concluded that long narrow geometries contribute to increase
of the blast wave front velocity and pressure. This indicates
an important role of space confinement during an explosion,
since it favors the formation of a shock rather than a weak
pressure wave aggravating the impact on humans and struc-
tures.
ig. 7. Snapshot of overpressure (a) and Mach number (b) profiles within
he computational domain in an early stage of shock wave propagation
time = 0.25 ms).

F
t

ig. 8. Snapshot of overpressure (a) and Mach number (b) profiles within
he computational domain after the bifurcation (time = 0.60 ms).
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Comparing the peak overpressures tabulated inTable 2,
it is apparent that overpressure maxima developed in the
branched tunnel are substantially smaller than that in the
straight tunnel. This may be of vital importance for the ex-
plosive industry as a safety measure for application in poten-
tial explosion accidents in confined spaces where explosive
materials are treated, or even for emergency corridors con-
struction in subway tunnels whose configuration is similar to
the studied one.

5. Conclusions

In this paper, a 3-D simulation of the shock wave propa-
gation produced by a dense explosive detonation in a small-
scale complex tunnel configuration was attempted. The main
purpose was to obtain and validate predictions of overpres-
sure histories, as well as to study the way that the resulting
shock wave propagates within the confined space applying
computational fluid dynamics techniques.

The comparison of numerical results with experimen-
tal measurements showed noticeable good agreement, espe-
cially with regard to arrival time predictions of the explosion
front. Computed overpressure maxima were generally over-
estimated in relation with the experimental ones, however
with reasonable relative errors.
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work 2000–2006) under the HERACLITUS research pro-
gram.
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